
Data Structures and 
Abstract Data Type (ADT)

Review
<gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

So far we know
• Linked Lists

• diagrams

• add to front/end, insert before/after, delete front/end/current,
search, reverse, concatenate, split.

• ~ Trees and ~~Graphs (more in next topics)

• Arrays and 2d arrays (aka matrix) 
int x[10];  
int table[50][100];  
 rows cols

• Hash Tables

Circular List
• Instead of finishing list with NULL pointer…

• Be careful to stop at some point when searching 
 
 
 
 
 

• this is one way to implement a circular buffer

• useful for streaming. e.g. "continuously play
audio" whilst downloading  

list_ptr
record record record

write

read

Doubly-Linked List
• next and previous pointers

• inserting and deleting is more complex

list_ptr
record record record

Doubly-linked List
Deleting head node

1) temp = list_ptr
record record record

2) list_ptr = temp->next 3) list_ptr->prev = NULL

4) free(temp)

list_ptr
record record record

list_ptr
record record

Matrix (2d array)
• create a big 2d table

• stored in 1d in memory of course

• shall we program a thing to find
out what order?

• int table[rows][cols];

• a sparse matrix - most elements
are 0 (unused)

• memory inefficient. could do…

• problems with this?

struct Sparse {  
 int row, col;
 int data;
};

Sparse a[128];  
int sparse_count = 0;  
 
a[0].row = 10;  
a[0].col = 0;
a[0].data = 222;
sparse_count++;

Abstract Data Types  
(ADT)

• Implementation agnostic

• any data structure/algorithm underneath

• user doesn't need/want details of how it
works

• might switch impl. behind scenes
depending on context

• e.g. abstract Stack - has push(), pop(),
top()

• one big malloc(), pointer, and offset?

• static array and counter?

• linked list?
element

next element top()  
pop()

push()

ADT and standard libraries
• C++ STL (standard template library) -1979

• Alexander Stepanov

• generic programming

• extended by Boost libraries

• other common ADTs; vector data type, dictionary/
map (probably a hash table underneath).

example - std::vector
• every lazy C++ programmer's favourite!

• it's a pre-made ADT from the STL in C++

• works like both a linked list and an array

• store any data type or object or struct in it

• don't have to touch any pointers directly

• http://en.cppreference.com/w/cpp/container/vector

http://en.cppreference.com/w/cpp/container/vector

Summary: 
It tells us to #include <vector>  
 
and we will use a class called vector with general form:  
 
template<  
 class T,  
 class Allocator = std::allocator<T>  
> class vector;  
 
<T> means "specify your own data type here when you go to use
vector".

live demo

std::vector use
• the vector class is under the std namespace

• has functions

• push_back() empty() size()
reserve()

• front() back() insert() … more

• can use the [] operators to access specific
element

You can make your own
template classes or functions
• e.g. sorting functions - work with any data type

• quite ugly/difficult to do in plain C

• if using objects - operators used in function must be
overloaded. i.e. { <, >, ==, =, … }

• put line above function declaration or definition: 
template <class T>

• then use T as an argument's data type 
void myfunc(T myarg);

live demo

&first is a  
C++ 'reference'

(it doesn't let
me use
pointers for a
template)

Generic Programming
• Practical downsides can include

• very poor performance / very slow compile time

• inspect assembly of template/generic code

• code hard to read/follow

• useless compiler error messages

• hard to step-through debug

• give away control over memory allocation - reserve()

